Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Xiao-Feng Li ${ }^{\mathbf{a} *}$ and Zheng-Bo Han ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemical Science and Engineering, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail:

ceslxf2006@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.054$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[diaquachloro (μ_{3} - p-phenylenedioxydiacetato)lanthanum(III)]

The title compound, $\left[\mathrm{La}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, was synthesized from lanthanum(III) chloride and p-phenylenedioxydiacetic acid under hydrothermal conditions. The ligands are bridging through carboxylate groups, forming a coordination polymer with ten-coordinate lanthanum(III) ions.

Comment

p-Phenylenedioxydiacetic acid $\left(\mathrm{H}_{2} \mathrm{OBDOA}\right)$ is a potential multidentate ligand. Several types of complexes of oBDOA ${ }^{2-}$ and transition metal ions have been studied (McCann et al., 1996). Up to now, however, only a few crystallographic studies of f-block metal complexes of oBDOA ${ }^{2-}$ have been reported (Kerfoot et al., 1979). We expected this dicarboxylate ligand would lead to more complicated structures for the high and variable coordination numbers of the $4 f$ metal ions. In this work, the oBDOA^{2-} ligand reacted with lanthanum(III) under hydrothermal conditions.

(I)

In the resulting complex (Fig. 1), each $\mathrm{La}^{\mathrm{III}}$ is coordinated by a chloride ion and nine O atoms, among which two O atoms are from water molecules, two are ether O atoms of the ligand, and five are from the carboxylate groups of three different ligands. The total coordination number of La is ten.

A pair of La centres are bridged by two carboxylate O atoms (O3 and O3 ${ }^{\text {i }}$; symmetry code in Table1), with an $\mathrm{La} \cdots$ La distance of 4.593 (2) \AA. Dinuclear units are further bridged by other carboxylate O atoms, giving a chain polymer structure (Fig. 2).

Experimental

A mixture of $\mathrm{LaCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{OBDOA}(0.5 \mathrm{mmol}), \mathrm{NaOH}$ (1.5 mmol) and ethanol (15 ml) was placed in a 23 ml Teflon reactor, which was heated at 393 K for 7 d and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. The resulting crystals were washed with ethanol and dried in air.
\qquad

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClLaO}_{8}$

$Z=4$

$D_{x}=2.221 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=3.53 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, colorless
$0.37 \times 0.23 \times 0.21 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.356, T_{\text {max }}=0.519$
$($ expected range $=0.327-0.477)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.054$
$S=1.06$
2532 reflections
181 parameters
H -atom parameters constrained

Table 1
Selected bond lengths (\AA).

$\mathrm{La}_{2} \mathrm{O}^{\mathrm{i}}$	$2.488(2)$	$\mathrm{La}-\mathrm{O} 3$	$2.744(2)$
$\mathrm{La}_{\mathrm{i}} \mathrm{OB}^{\mathrm{i}}$	$2.541(2)$	$\mathrm{La}-\mathrm{O} 1^{i}$	$2.771(2)$
${\mathrm{La}-\mathrm{O} 5^{i}}^{\mathrm{ii}}$	$2.578(2)$	$\mathrm{La}-\mathrm{O} 1 W$	$2.600(2)$
$\mathrm{La}-\mathrm{O} 4^{i}$	$2.622(2)$	$\mathrm{La}-\mathrm{O} 2 W$	$2.563(2)$
$\mathrm{La}-\mathrm{O} 2$	$2.688(2)$	$\mathrm{La}-\mathrm{Cl} 1$	$2.8892(8)$

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+2,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2 W^{\text {i }}$	0.84	1.91	2.738 (3)	166
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{Cl} 1^{\text {iii }}$	0.84	2.43	3.223 (2)	156
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 2^{\text {iv }}$	0.85	1.81	2.663 (3)	176
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 6^{\mathrm{ii}}$	0.85	1.82	2.668 (3)	173
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.85	2.52	2.995 (3)	116

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+2,-y+1,-z+1$; (iii) $x,-y+\frac{5}{2}, z+\frac{1}{2}$; (iv) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$.

H atoms were placed at calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA, \mathrm{O}-\mathrm{H}=0.84-0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O}, \mathrm{C})$.

Figure 1
Part of the title polymeric structure, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) $2-x, 2-y, 1-z$; (B) $2-x, 1-y, 1-z$.]

Figure 2
Chain-like polymer structure of the complex. H atoms have been omitted for clarity.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker,2001; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

This work was supported by the China Postdoctoral Foundation (No. 2004035597).

References

Bruker (2001). SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Kerfoot, H. B., Choppin, G. R. \& Kistenmacher, T. J. (1979). Inorg. Chem. 18, 787-790.
McCann, M., Casey, M. T., Devereux, M., Curran, M., Cardin, C. \& Todd, A. (1996). Polyhedron, 15, 2117-2120.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

